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Background: Structured Data
(a) Sequence (b) Tree (c) Graph
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Distributed Representations are attractive for modeling structured data:
▶ Similarity: Convolution Kernel, Representation Learning, Semantic Hashing
▶ Classification: Multi-label Classification, Structured Prediction
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(1) Feature Extraction from Trees
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High Dimension

Trees are fundamental data structures used to represent very different objects
such as proteins, HTML documents, or NL utterances

Tree Kernel [NIPS2001] requires extracting all tree fragments that occur in a tree
▶ Dynamic Programming, Distributed Tree Kernel [ICML2011]
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(2) Multi-label Classification
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(3) Representation Learning on Graphs

u =⇒
xT
u

Rd

Feature Representation
Embeddings

Graph Representation Learning is to construct a set of features
(“embeddings”) representing the structure (nodes/edges) of the graph
▶ node classification, link prediction, etc.
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Holographic Reduced Representations
HRR is a method for representing compo-
sitional structure in distributed representa-
tion [IJCAI1991]

Eg.: Frame Structure “Mark eats the fish”

f= eat+agteat ∗Mark+objeat ∗Fish

where ∗ is an encoding operator

HRR has a decoding operator

agteat ⋆ f≈Mark
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HRR Encoding Operator ∗

[b]0
[a]0

[b]1

[a]1

[b]2

[a]2

[a∗b]j =
d−1

∑
k=0

[a]k[b](j−k)

(for j= 0, . . . ,d−1)

Circulant Matrix of a vector:

circ(a) =

 [a]0 [a]2 [a]1
[a]1 [a]0 [a]2
[a]2 [a]1 [a]0


Circulant Matrix circ(a) ∈ Rd×d can be
written as F−1

d diag(Fda)Fd where Fd is
the d×d Fourier matrix

Circular Convolution ∗:

a∗b= circ(a)b= F−1
d (Fda⊙Fdb)

8 / 32



HRR Decoding Operator ⋆

[b]0
[a]0

[b]1

[a]1

[b]2

[a]2

[a⋆b]j =
d−1

∑
k=0

[a]k[b](k+j)

(for j= 0, . . . ,d−1)

The transpose of a circulant matrix of a vector:

circ(a)T =

 [a]0 [a]1 [a]2
[a]2 [a]0 [a]1
[a]1 [a]2 [a]0


Circular Correlation ⋆:

a⋆b= circ(a)Tb= F−1
d (Fda⊙Fdb)

z represents the complex conjugate of a
complex vector z
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Why Correlation decodes Convolution?
Consider 3-dim. vectors c= [c0,c1,c2]T and x= [x0,x1,x2]T where ci and xi are
independently drawn from N(0, 1d) (here, d= 3). The convolution of x and c is

m= c∗x=

 c0x0+ c1x2+ c2x1
c0x1+ c1x0+ c2x2
c0x2+ c1x1+ c2x0


We could reconstruct x from this tracem by correlating with the cue c

c⋆c∗x=

 x0(1+ζ )+η0
x1(1+ζ )+η1
x2(1+ζ )+η2

≈ x where ζ d
= N(0, 2d) and ηi

d
= N(0, d−1

d2
)
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Multi-label Learning with HRR (1/4)
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Multi-label Learning with HRR (2/4)
“Learning with Holographic Reduced Representations”,
Ganesan et. al., NeurIPS, 2021.

We begin by converting each class label into a label vector y ∈ Rd

▶ d is much smaller than the size of the set of output classes: d≪ L
▶ All vector elements are sampled according to N(0, 1d)

Animalia . . . Mammalia . . . Japanese macaque Macaca nigra

yA yMamma yJ yMacaca
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Multi-label Learning with HRR (3/4)

“Learning with Holographic Reduced Representations”,
Ganesan et. al., NeurIPS, 2021.

Using the HRR framework, we construct a label vector yx for a given data x

yx = yP ∗ (yA+yMamma+ · · ·+yMacaca)︸ ︷︷ ︸
tP

+yN ∗ (· · ·+yJ)︸ ︷︷ ︸
tN
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Multi-label Learning with HRR (4/4)
“Learning with Holographic Reduced Representations”,
Ganesan et. al., NeurIPS, 2021.

...
...

...

Training Phase: Label vector yx
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Multi-label Learning with HRR (4/4)
“Learning with Holographic Reduced Representations”,
Ganesan et. al., NeurIPS, 2021.

...
...

...

Inference Phase: Key vector yP

⋆ ≈ tP

t≤ yT
AtP ?
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Why Addition Memories work well?
One way to store k vectors is to add them together: t= a+b+c (k= 3)

Such storage does allow for determining whether an item has been stored or not

To test whether a vector x is in the trace
t, we compute the dot product:

x= a sAccept = aTt
x= d sReject = dTt

sAccept and sReject are distributed as:

sAccept
d
= N(1, (k+1)

d )

sReject
d
= N(0, kd)

k= 3 and d= 64

−1 0 1 2
0

0.5

1

1.5

2 Reject
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Definition: RDF Knowledge Base

Leonard Nimoy Star Trek

Spock SciFi

Star Wars Alec Guinness

Obi-Wan Kenobi

played

starredIn

characterIn
played

starredIn

characterIn
genre genre

KB K is a set of facts
▶ fact: a triple of the form (s, r,o) (alternative notation r(s,o))
▶ s/o is the subject/object, r is the relation (or predicate)
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KB Example: DBPedia
DBPedia [Semantic Web2013]: A project aiming to extract structured content from
Wikipedia information

https://www.dbpedia.org/
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Open Knowledge Bases
The research on Semantic Web and Linked Data led to many open datasets

These open datasets are rebranded as “Knowledge Graphs”
▶ DBPedia, Freebase, YAGO, NELL, Wikidata, KBPedia, Datacommons.org

Many open Knowledge Bases are sourced from Wikipedia and also benefited from
unstructured corpus for their building process

Problem: KBs are imcomplete and have many missing links
▶ 93.8% of persons from Freebase have no place of birth and 78.5% have no

nationality
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Representation Learning on KBs

x= Tokyo / isCapitalOf

0 0 0

. . .

. . . 0 0 1

. . .

. . . 0 0 0Signal

Output

Hidden

Input

y= Japan

Learning: minimize errors
between signal and output

Loss Function:
e.g. Cross-Entropy Loss

− log
exp(fθ (x,y))

∑y′∈Y exp(fθ (x,y′))

“Knowledge Graph Embedding: A
Survey of Approaches and
Applications”,
Wang et. al., IEEE TKDE, 2017.
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Our work: Loss Functions
We also have studied loss functions for Knowledge Graph Embeddings:

1. “Unified Interpretation of Softmax Cross-Entropy and Negative Sampling: With
Case Study for Knowledge Graph Embedding”,
Hidetaka Kamigaito and Katsuhiko Hayashi, ACL, 2021.

2. “Comprehensive Analysis of Negative Sampling in Knowledge Graph
Representation Learning”,
Hidetaka Kamigaito and Katsuhiko Hayashi, ICML, 2022.

For the details, refer to a tutorial by Hidetaka Kamigaito
▶ https://stair.center/archives/3111
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Scoring Functions

x= Tokyo / isCapitalOf

0 0 0

. . .

. . . 0 0 1

. . .

. . . 0 0 0Signal

Output

Hidden

Input

y= Japan
Scoring Function fθ (x,y):
designed to measure the plausibility
of triples
e.g. RESCAL model [ICML2011]

fθ (x= s/r,y= o) = eT
s Wreo

“Knowledge Graph Embedding: A
Survey of Approaches and
Applications”,
Wang et. al., IEEE TKDE, 2017.
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RESCAL Model [ICML2011]

eoes

Wr

fRESCAL(s, r,o)

“A Three-Way Model for Collective
Learning on Multi-Relational Data”,
Nickel et. al., ICML, 2011.

Each relation is represented as a matrix
which models pairwise interactions
between latent factors:

fRESCAL(s, r,o) = eT
s Wreo

RESCAL requires O(d2) parameters per
relation

RESCAL is fully expressive: If given any
ground truth, there exists an assignment of
values to the embeddings of the entities and
relations that accurately separates the
correct triples from incorrect ones
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HolE Model [AAAI2016]

eoes

wr

fHolE(s, r,o)

“Holographic Embeddings of
Knowledge Graphs”,
Nickel et. al., AAAI, 2016.

HolE requires only O(d) parameters per
relation

fHolE(s, r,o) =wT
r (es ⋆eo)

Since circular correlation ⋆ is not
commutative, i.e., x⋆y ̸= y⋆x, HolE is able
to handle asymmetric relations as RESCAL
does (fully expressive)

HRR memory: eo = ∑r′(s′,o)∈Kes′ ∗wr′

acts as a memorym that stores the set of all
s-r pairs for which r′(s′,o) is true
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Circular Correlation

[b]0
[a]0

[b]1

[a]1

[b]2

[a]2

[a⋆b]j =
d−1

∑
k=0

[a]k[b](k+j)

(for j= 0, . . . ,d−1)

Circular correlation via the Discrete Fourier
Transform can be computed in O(d logd) time

fHolE(s, r,o) = wT
r (ys ⋆yo)

= wT
r F

−1(F(ys)⊙F(yo))

where F is the discrete Fourier
transform (DFT) and F−1 is the inverse DFT
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Spectral HolE Model [ACL2017]
“On the Equivalence of Holographic and Complex Embeddings for Link Prediction”,
Hayashi and Shimbo, ACL, 2017.

operation time frequency
scalar mult. αx ↔ α F(x)
summation x+y ↔ F(x)+F(y)

flip flip(x) ↔ F(x)
convolution x∗y ↔ F(x)⊙F(y)
correlation x⋆y ↔ F(x)⊙F(y)
dot product xTy = 1

n F(x)
TF(y)

We proposed a method how to train
HolE solely in the frequency domain

fHolE(s, r,o) = wT
r (ys ⋆yo)

=
1
n

ωT
r (ε s⊙ εo)

where ω r = F(wr), ε s = F(es) and
εo = F(eo) are d-dim. complex
vectors
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ComplEx Model [ICML2016]

eoes

wr

fComplEx(s, r,o)

“Complex Embeddings for Simple Link
Prediction”,
Trouillon et. al., ICML, 2016.

Embedding space = complex space (not
real space)

fComplEx(s, r,o) = ℜ(
d−1

∑
i=0

[es]i[wr]i[eo]i)

where ℜ(·) means taking the real part
of a complex value

ComplEx = HolE [Hayashi, ACL2017]

fHolE(s, r,o) =
2
d
fComplEx(s, r,o)
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ComplEx is Simple but Tough to Beat
KGC performance on FB15k-237
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FB15k-237: KGC benchmark dataset

RotatE [ICLR2019] and
HAKE [AAAI2020] are current SoTa
models

ComplEx also achieves comparable
results with StAR [TACL2021],
SimKGC [ACL2022] and
kNN-KGE [2023], which are KGC
models based on LLMs
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HRR (Notify Again)
HRR is a method for representing compo-
sitional structure in distributed representa-
tion [IJCAI1991]

Eg.: Frame Structure “Mark eats the fish”

f= eat+agteat ∗Mark+objeat ∗Fish

where ∗ is an encoding operator

HRR has a decoding operator

agteat ⋆ f≈Mark
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Complex-valued HRR System
It might be possible to work with complex numbers and avoid convolution and
Fourier transforms altogether

operation time frequency
scalar mult. αx ↔ α F(x)
summation x+y ↔ F(x)+F(y)

flip flip(x) ↔ F(x)
convolution x∗y ↔ F(x)⊙F(y)
correlation x⋆y ↔ F(x)⊙F(y)
dot product xTy = 1

n F(x)
TF(y)

Initialization of HRR vectors:

x′ = F(x= [x0, . . . ,xd−1]
T)

where xi
d
= N(0, 1d)

We have correspondence between
operations in time and frequency
domains
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Circular HRR System
Tony A. Plate proposed circular HRR system in his thesis [1994]:

operation

vector ϕ̄ = [ϕ0, . . . ,ϕd−1] where

ϕi
d
= U(−π,π)

dot product ϕ̄ · θ̄ = 1
d ∑i cos(ϕi−θi)

binding ϕ̄ ⊙ θ̄ = [(ϕ0+θ0)mod2π, . . . ,
(ϕd−1+θd−1)mod2π]

decoding −ϕ̄ ⊙ θ̄
addition ϕ̄ ⊕ θ̄ = [ζ0, . . . ,ζd−1] where

cos(ζi) = cos(ϕi)+cos(θi) and
sin(ζi) = sin(ϕi)+sin(θi)

The polar form of a complex
number:

Im

Re

(cosϕ ,sinϕ)

ϕ
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Relationship to Binary Spatter Coding
Binary spatter codes (BSC) [Kanerva,1996] are identical to the circular HRR
system working on unitary vectors with phase angles quantized to 0 and π
▶ The two possible values 1+0i and −1+0i

BSC use exclusive-OR (XOR) for binding binary vectors
▶ Elementwise multiplication of complex vectors whose elements can be 1+0i or

−1+0i is equivalent to XOR (more strictly, the logical complement of
XOR (XNOR))

BSC use the majority rule for the addition of a set of vectors
▶ the sum of such vectors followed by elementwise quantization to 1+0i or

−1+0i is equivalent to computing the elementwise majority
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Our work: Binarized Embeddings

eoes

wr

fBinary(s, r,o)

“Binarized Knowledge Graph Embed-
dings”, Kishimoto et. al., ECIR, 2019.
▶ Scoring Function fBinary(s, r,o):

−Ham(es,XNOR(eo,wr))

Other papers:

▶ “A Greedy Bit-flip Training Algorithm
for Binarized Knowledge Graph
Embeddings”,
Katsuhiko Hayashi, Koki Kishimoto,

Masashi Shimbo, Findings of EMNLP,
2020.

▶ “Binarized Embeddings for Fast,
Space-Efficient Knowledge Graph
Completion”,
Katsuhiko Hayashi, Koki Kishimoto,

Masashi Shimbo, IEEE TKDE, 2023.
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Conclusion
I introduced a method using circular convolution for encoding compositional
structured data into low-dimensional vector space
▶ Multi-label Learning with HRR
▶ Graph Representation Learning with HRR
▶ Complex/Binary-valued HRR Systems

I am now interested in designing more effective vector symbolic architechtures

I seek a research collaborator
▶ Please feel free to contact me: katsuhiko-h@ist.hokudai.ac.jp
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