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Invariance in pattern recognition

• The input signal for recognition often has invariance 
and equivariance with respect to transformations. 

input image horizontal flipping rotation

‘dog’
Image rotation
and flip

Co. A Co. B Co. C Co. D

va
lu

e

time

𝐴𝑡
𝐵𝑡
𝐶𝑡
𝐷𝑡

𝐴𝑡+1
𝐵𝑡+1
𝐶𝑡+1
𝐷𝑡+1

Predictor 𝑓

𝐵𝑡
𝐶𝑡
𝐴𝑡
𝐷𝑡

𝐵𝑡+1
𝐶𝑡+1
𝐴𝑡+1
𝐷𝑡+1

Predictor 𝑓

equivalentPermutation of
multi-variate 
time series

2



Equivariant Neural Network
• Equivariant Neural Network constructs the network by 

composing multiple equivariant layers.

• Given transformation 𝑇, equivariant layer 𝑓 is a layer 
that commutes with 𝑇 such that
𝑓 𝑇𝑖𝑛 𝑥 = 𝑇𝑜𝑢𝑡(𝑓 𝑥 ).

• We apply pooling with respect to transformations to 
obtain invariant prediction.
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Group Equivariant Convolutional 
Networks [Cohen & Welling, 2016]

• Apply all the transformations to the convolutional 
filter and then apply convolution to the image.

• Then image transformations results in the 
permutation of the filter response (equivariant).
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Today’s topic

• Self-supervised learning on equivariant neural networks 
https://arxiv.org/pdf/2303.04427.pdf

• Time series prediction considering hierarchical 
permutation equivariance https://arxiv.org/pdf/2305.08073.pdf
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Self-Supervised Learning

• First we pretrain the model with user defined pretext 
task that does not use image label.

• Then we use the feature extractor for the target task.
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Self-Supervised Learning Methods

• Hand-crafted tasks
• Train the model to solve hand-crafted ill-posed problem.

• We assume that the feature extractor learn good image 
prior while trying to solve the problem.

• Contrastive learning
• Apply data augmentation and trains the model to make 

the augmented images from the same image close.
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Context prediction [Doersch et al., 
2015]
• Predict the spatial relationship between two image 

patches.
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Model

• Cast the context prediction as 8 category prediction 
from two image sub-region.

architecture
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Contrastive Learning

• Learn feature so that two augmented image are 
closer than the other images by contrastive loss 

exp
𝑥𝑡𝑥𝑝

𝜏

exp
𝑥𝑡𝑥𝑝

𝜏
+σ𝑘 exp

𝑥𝑡𝑥𝑘
𝑛

𝜏

augmentation

𝑥𝑥𝑝

𝑥1
𝑛 𝑥2

𝑛 𝑥3
𝑛 𝑥4

𝑛 𝑥5
𝑛

close

distant
10



Motivation

• Combine the idea of
• Exploiting the prior knowledge as group equivariant 

architecture.

• Exploiting the prior knowledge as pretext task.
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Difficulty

• The function learned by equivariant neural 
networks 𝑓𝑁𝑁 is restricted to equivariant such that  
𝑓𝑁𝑁 𝑇𝑖𝑛 𝑥 = 𝑇𝑜𝑢𝑡(𝑓𝑁𝑁 𝑥 ).

• We cannot learn the task if the pretext label 
violates this equivariance.
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Proposed: equivariant pretext 
label
• Restrict the pretext label space so that satisfies 

𝑇out 𝑔 𝑦pretext 𝑥 = 𝑦pretext 𝑇in(𝑔)(𝑥) .
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Proposed: invariant contrastive 
loss
• Invariant contrastive loss is the loss function that 

satisfies 
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Context prediction [Doersch et al., 
2015]
• Predict the spatial relationship between two image 

patches.
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Equivariant Context Prediction

• The label space ℝ8 of context prediction task 
satisfies 90∘ rotation equivariance.
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Invariant Contrastive Learning

• We average the output feature as
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Experiment

• Evaluation: 
• Pretrain on ImageNet (1,300,000 images, 1,000 labels)

• Apply linear classifier on top of the pretrained model.

• Architecture: ResNet50

• Compare
• Standard non-equivariant model

• Group equivariant model with the proposed loss

• Group equivariant model with standard non-equivariant loss
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Result
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Multi variate time series prediction

• Predict the future of multi-variate time series

• The predictor should be equivariant to the 
permutation of the time series.
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Self-attention

• Calculate the output by the weighted average of 
the input, whose weights are calculated by the 
similarity of the inputs. 

• We can preserve permutation equivariance by 
applying self-attention between the time series.

21
[1] Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems. 2017.



Hierarchical permutation 
equivariance
• We consider the case that time series are 

hierarchically grouped by such as sector, class. 

• We want to restrict the equivariance to the  
permutation that considers hierarchy.
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Feature extractor

• Use 3D self-attention within class 𝑆𝑖, between 
classes 𝐶, time 𝑇.
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𝑆𝑖 self-attention

• Split the time series according to the class and 
apply self attention within class. 
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𝐶 self-attention

• Summarize the features of each class and then calculate 
the self-attention between the summarized features.
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Experiment

• NBA: Trajectory of players and the ball in the basket 
game.
• In: 40 steps, Out: 10 steps

• 11 agents, 3 classes (ball, team A, team B)

• Train: 80,000, Validation: 48,299, Test: 13,464

• Evaluate the prediction accuracy by reducing the number of 
team A/B players at test time.
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Result
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Left: without class information, Right: with class information
0~4 indicates the number of reduced players from each team



Conclusion

• We introduced two recent works relating equivariant 
neural networks.
• Propose the idea of equivariant pretext labels and invariant 

contrastive loss to combine equivariant neural networks and 
self-supervised learning https://arxiv.org/pdf/2303.04427.pdf

• Propose the multi-variate time series prediction method 
considers hierarchical permutation equivariance 
https://arxiv.org/pdf/2305.08073.pdf
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