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Self Introduction

Career:
● ~ Mar. 2021: Ph. D at The University of Tokyo
● Apr. 2021 ~ : Research Scientist at CyberAgent AI Lab

○ Research related to creating advertisements

Research interest:
● generative models for graphic design
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● Visual + textual content
● Important to convey ideas

Graphic Design

banner ad  presentation  meme (credit) 

https://www.meme-arsenal.com/en/create/meme/1369297
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Raster v.s. Vector Format

Raster

● for display 
● e.g., .jpg, .png, … 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Raster v.s. Vector Format

Raster

● for display 
● e.g., .jpg, .png, … 

Vector

● for edit
● e.g., .pptx, .psd, .svg, … 

<svg> 
  <image xlink: href=”...”> 
  <rect x=55 y =10 … ></rect> 
  <text x=10 … >X,XXX円</text> 
  … 
</svg> 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Features
● Multi-modal attributes
● Large number of elements

Research question
● How to generate vector graphic document?

Graphic Design in Vector Format
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Layout

= Simple yet essential interface to understand & control visual design

: image 
: text 
: embellishment 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Controllable Layout Generation

Our work: solve a broad range of tasks in a single model
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● A discrete diffusion model tamed for layout generation

LayoutDM
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● A discrete diffusion model tamed for layout generation
● Training-free algorithm to inject various conditions during inference

LayoutDM
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LayoutDM Results

Input:
category Output Input:

noisy layout Output
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● A set of category (1-dim.) + positional info. (4-dim. e.g., xywh)
● Recent trend: layout as a sequence of discrete variables (c.f., text)

What is Layout?

image 
text 

logo 

Visualization

[ 
[“image”, 0.3, 0.5, 0.25, 0.9], 
[“text”, 0.7, 0.35, 0.25, 0.15], 
[“text”, 0.7, 0.6, 0.25, 0.4], 
[“logo”, 0.85, 0.95, 0.2, 0.04], 

] 

Data
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● = diffusion models for modeling categorical variables (e.g., text)
● Corruption: a token is stochastically replaced with another in vocabulary

Discrete Diffusion Models [Austin+, NeurIPS’21]

https://arxiv.org/abs/2107.03006
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Adapting Discrete Diffusion Models for Layout
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● [PAD] token to enable variable length generation

Adapting Discrete Diffusion Models for Layout
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● [PAD] token to enable variable length generation

Adapting Discrete Diffusion Models for Layout

● Modality-wise corruption process
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How to Feed Conditions during Inference?
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● Hard condition: masking
○ e.g., “i-th element’s category is C”

How to Feed Conditions during Inference?
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● Hard condition: masking
○ e.g., “i-th element’s category is C”

How to Feed Conditions during Inference?

● Soft condition: logit adjustment
○ e.g., “an element at the top”, “an element bigger than another”
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Inject soft condition as a prior term

Logit Adjustment
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Inject soft condition as a prior term

Logit Adjustment

How to implement a prior?
● Hard coding (e.g., refinement task)
● Gradients from loss functions w.r.t. the prediction (e.g., relationship task)
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● No fixed generation order unlike auto-regressive models
○ c.f., LayoutTransformer [Gupta+, ICCV’21]

● Flexibly changing the number of elements to be generated
○ c.f., BLT [Kong+, ECCV’22]

● Incorporating both hard and soft conditions
○ c.f., NDN [Lee+, ECCV’20]

Advantages over Existing Methods

https://arxiv.org/abs/2006.14615
https://arxiv.org/abs/2112.05112
https://arxiv.org/abs/1912.09421
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Results in Rico [Deka+, UIST’17]

https://dl.acm.org/doi/10.1145/3126594.3126651
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Results in PubLayNet [Zhong+, ICDAR’19]

https://arxiv.org/abs/1908.07836
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Quantitative Evaluation (in category + size → position)

LayoutDM achieves the best speed-quality tradeoff
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Quantitative Evaluation (in category + size → position)

Better

Worse

LayoutDM achieves the best speed-quality tradeoff
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Quantitative Evaluation (in category + size → position)

Better

Worse

LayoutDM achieves the best speed-quality tradeoff
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● A discrete diffusion model tamed for layout generation
● Training-free algorithm to inject various conditions during inference
● Favorable performance against task-specific/agnostic baselines

Summary

Check codes and more results at 
https://cyberagentailab.github.io/layout-dm/
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Web page colorization
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= Tree structure where each element has style and content information

Data structure of web page
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Generate color styles given content and hierarchical structure of elements

Structured color prediction
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● E-commerce mobile web pages adapted from [Hotti+, arXiv’21]
● Convert to a tractable data format

New dataset for web page colorization

e.g., keep only elements that contribute to the first view (Avg. elements: 1656 → 61)

…

https://www.researchgate.net/publication/355901389_The_Klarna_Product_Page_Dataset_A_RealisticBenchmark_for_Web_Representation_Learning
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Generate color styles given content and hierarchical structure of elements

Proposed Hierarchy-aware CVAE model
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Embed content with message passing to capture hierarchical relationships

Proposed Hierarchy-aware CVAE model
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Compute style features with the content embeddings and latent vectors

Proposed Hierarchy-aware CVAE model
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Predict color style for each element based on the style feature

Proposed Hierarchy-aware CVAE model
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Experimental Results

Ours (CVAE)
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● New dataset for web page colorization
● Generate color styles given content and hierarchical structure of elements
● Our hierarchy-aware CVAE model performs better than baselines

Summary

Dataset, code, and pre-trained models are available!
https://github.com/CyberAgentAILab/webcolor

https://github.com/CyberAgentAILab/webcolor


Towards Flexible
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(Highlight)
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Flexible Document Model (FlexDM)

Our work: solve many design tasks in a single model
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Key Idea of FlexDM

Multi-modal masked field prediction as a unified interface
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FlexDM Results

Input Output
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● A data format for making visual design (e.g., banner by Photoshop)
● Consists of a set of visual elements (+ global info) [Yamaguchi+, ICCV’21]
● Scalable, editable, human-interpretable

Vector Graphic Document

https://arxiv.org/abs/2108.01249
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Design Tasks in Iterative Design Process
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Design Tasks in Iterative Design Process

● High variety of possible actions
● Complex interaction between multi-modal elements

→ We handle design tasks in a principled manner
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Masked Field prediction (MFP)

● Predicting arbitrary number of fields hidden by [MASK]
● Challenges

○ How to encode/decode various type of fields?
○ How to handle larger number of fields?
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Network for Masked Field Prediction (MFP)

E: encoder
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Network for Masked Field Prediction (MFP)

E: encoder, T: Transformer encoder
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Network for Masked Field Prediction (MFP)

E: encoder, T: Transformer encoder, D: decoder
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● Various type of fields → attribute-specific enc. and dec.
● Large number of fields → consider interaction only in element-level

Challenges and solutions in MFP
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Training
1. In-domain pre-training (15% random masking)
2. Explicit multi-task learning for target design tasks

Loss: reconstruction error
Preprocess
● Quantization for numerical attributes
● Feature extraction using pre-trained models for image and text

Training FlexDM
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Attributes Prediction (ATTR)

Input Output
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Texts Prediction (TXT)

  

Input Output
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Element Filling (ELEM)

  

Input Output
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Quantitative Evaluation in Crello

1. Much better than baselines
2. Almost close to task-specific expert
3. Both components are important
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Quantitative Evaluation in Crello

1. Much better than baselines
2. Almost close to task-specific expert
3. Both components are important
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● Masked field prediction (MFP) as a unified interface
● A model handling larger number of fields and tasks efficiently
● Promising performance in various documents (e.g., banner, web, ...)

Summary

Check codes and more results at 
https://cyberagentailab.github.io/flex-dm/
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Summary
● Graphic design = multi-modal data
● Formulate many generation tasks using sequence-like data structure
● Many challenges remaining

○ End-to-end generation including texts and images, or some alternative?
○ ChatGPT-like one-model-fits-all moment for design generation?

Conclusion
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