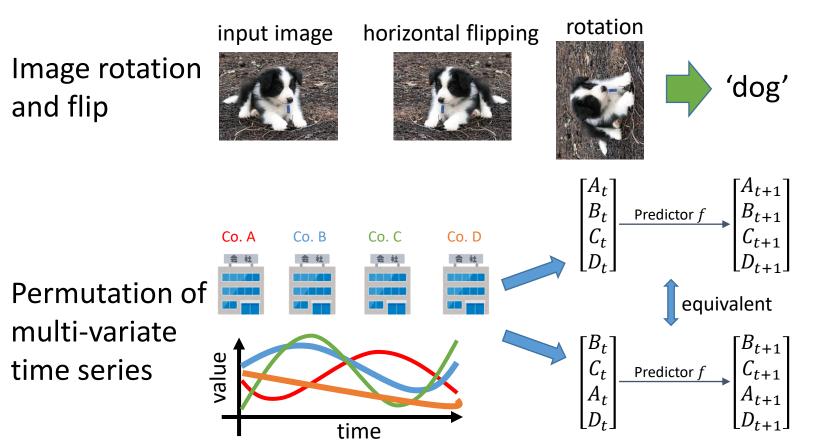
On training and application of equivariant neural networks. The University of Tokyo & RIKEN AIP Mukuta Yusuke

Invariance in pattern recognition

• The input signal for recognition often has invariance and equivariance with respect to transformations.

2

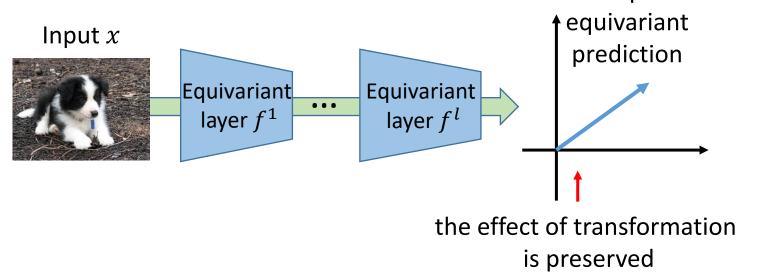


Equivariant Neural Network

- Equivariant Neural Network constructs the network by composing multiple equivariant layers.
- Given transformation T, equivariant layer f is a layer that commutes with T such that

 $f(T_{in}(x)) = T_{out}(f(x)).$

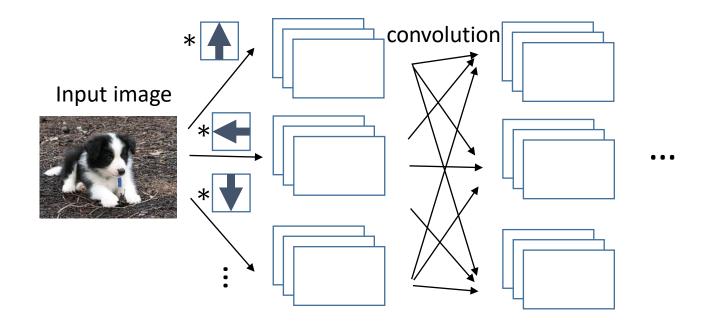
• We apply pooling with respect to transformations to obtain invariant prediction. Output



3

Group Equivariant Convolutional Networks [Cohen & Welling, 2016]

- Apply all the transformations to the convolutional filter and then apply convolution to the image.
- Then image transformations results in the permutation of the filter response (equivariant).

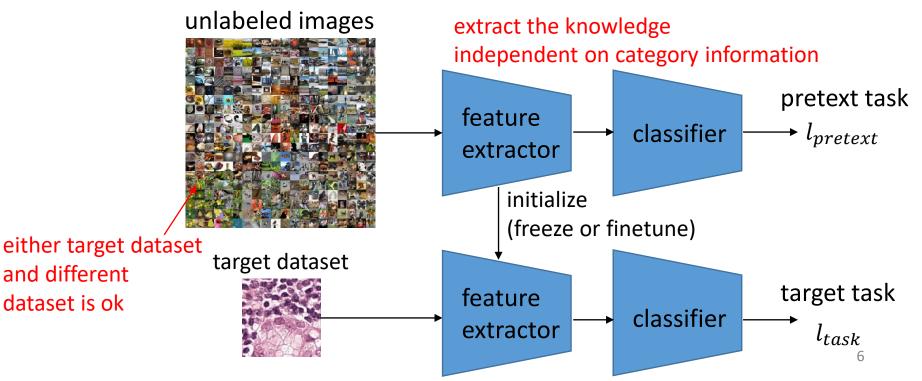


Today's topic

- Self-supervised learning on equivariant neural networks https://arxiv.org/pdf/2303.04427.pdf
- Time series prediction considering hierarchical permutation equivariance https://arxiv.org/pdf/2305.08073.pdf

Self-Supervised Learning

- First we pretrain the model with user defined pretext task that does not use image label.
- Then we use the feature extractor for the target task.

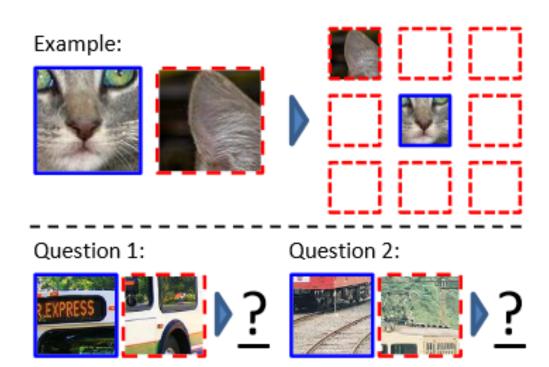


Self-Supervised Learning Methods

- Hand-crafted tasks
 - Train the model to solve hand-crafted ill-posed problem.
 - We assume that the feature extractor learn good image prior while trying to solve the problem.
- Contrastive learning
 - Apply data augmentation and trains the model to make the augmented images from the same image close.

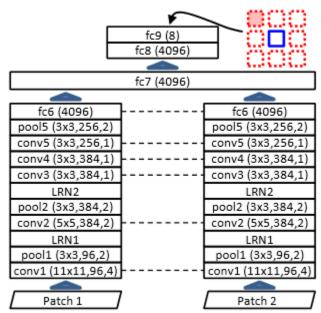
Context prediction [Doersch et al., 2015]

Predict the spatial relationship between two image patches.



Model

• Cast the context prediction as 8 category prediction from two image sub-region.

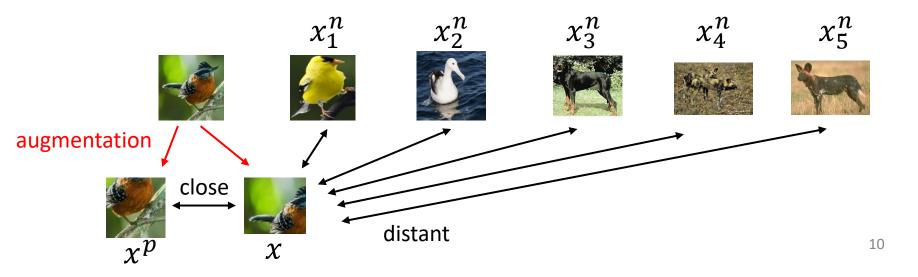


$X = (\bigcup_{i=1}^{n} (i) (Y_i = 3)); Y = 3$

architecture

Contrastive Learning

• Learn feature so that two augmented image are closer than the other images by contrastive loss $\frac{\exp\left(\frac{x^{t}x^{p}}{\tau}\right)}{\exp\left(\frac{x^{t}x^{p}}{\tau}\right) + \sum_{k} \exp\left(\frac{x^{t}x^{n}_{k}}{\tau}\right)}$



Motivation

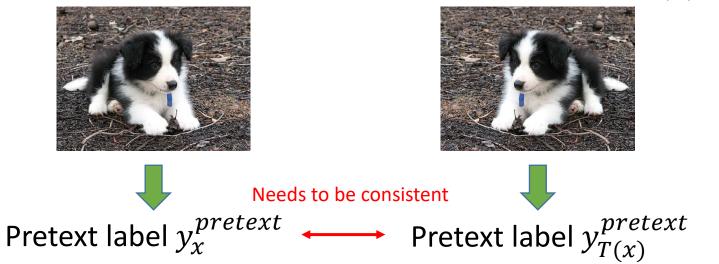
- Combine the idea of
 - Exploiting the prior knowledge as group equivariant architecture.
 - Exploiting the prior knowledge as pretext task.

Difficulty

- The function learned by equivariant neural networks f_{NN} is restricted to equivariant such that $f_{NN}(T_{in}(x)) = T_{out}(f_{NN}(x)).$
- We cannot learn the task if the pretext label violates this equivariance.

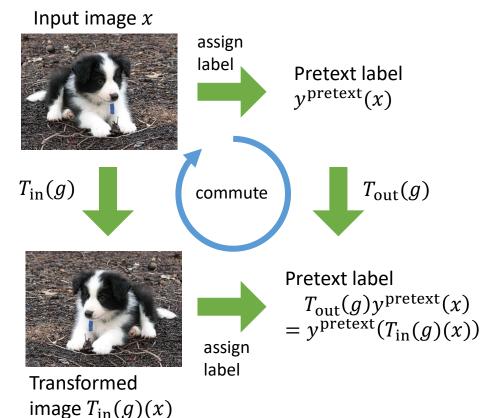
input image x

transformed image T(x)



Proposed: equivariant pretext label

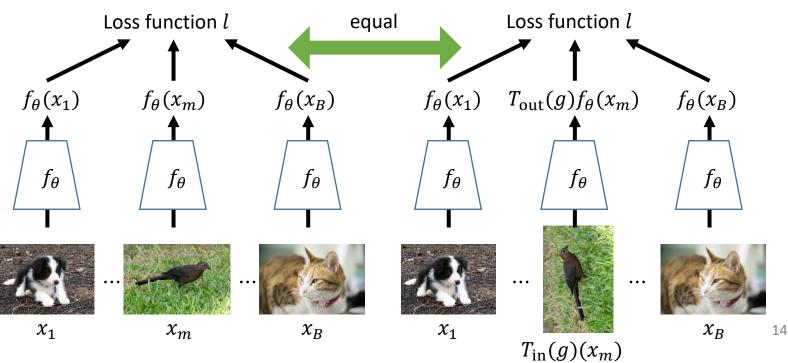
• Restrict the pretext label space so that satisfies $T_{out}(g)y^{pretext}(x) = y^{pretext}(T_{in}(g)(x)).$



Proposed: invariant contrastive loss

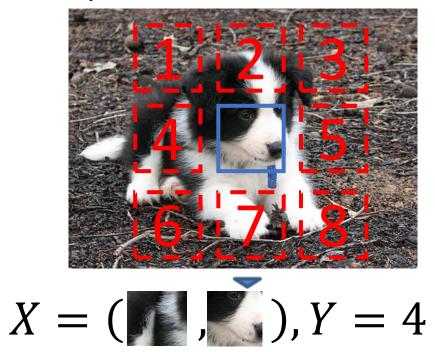
Invariant contrastive loss is the loss function that satisfies

 $l(f_{\theta}(x_1), f_{\theta}(x_2), ..., f_{\theta}(x_B)) = l(f_{\theta}(x_1), f_{\theta}(x_2), ..., T_{out}(g) f_{\theta}(x_m), ..., f_{\theta}(x_B))$



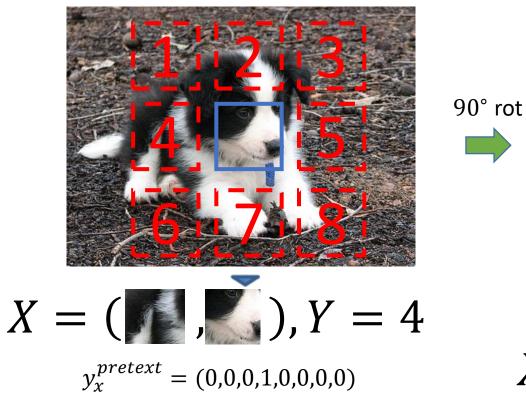
Context prediction [Doersch et al., 2015]

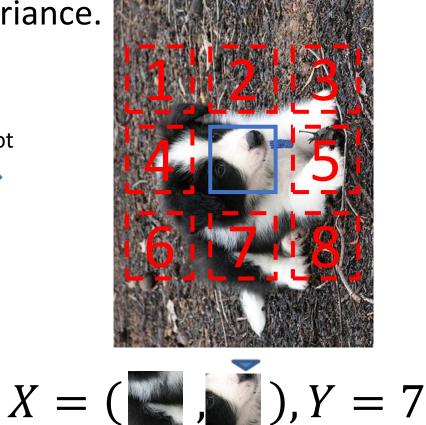
Predict the spatial relationship between two image patches.



Equivariant Context Prediction

• The label space \mathbb{R}^8 of context prediction task satisfies 90° rotation equivariance.



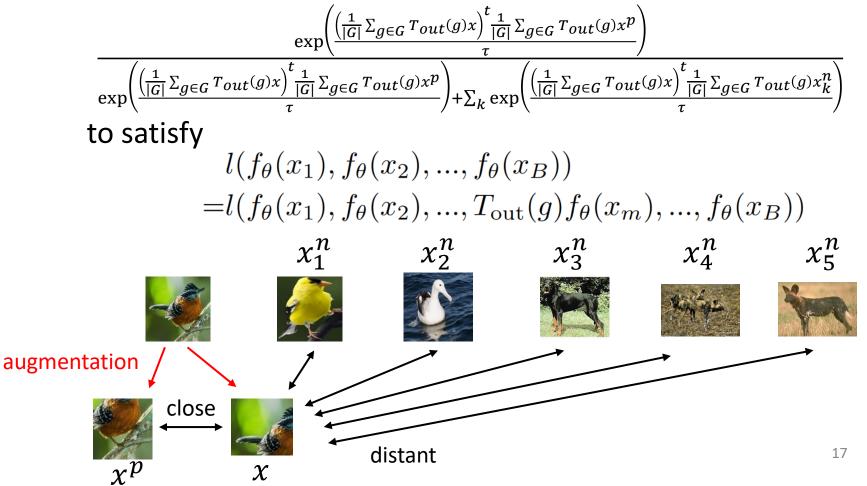


 $\sum_{r} (0,0,0,0,0,0,0,1,0)$

16

Invariant Contrastive Learning

We average the output feature as



Experiment

- Evaluation:
 - Pretrain on ImageNet (1,300,000 images, 1,000 labels)
 - Apply linear classifier on top of the pretrained model.
- Architecture: ResNet50
- Compare
 - Standard non-equivariant model
 - Group equivariant model with the proposed loss
 - Group equivariant model with standard non-equivariant loss

Result

Method	Baseline	Equivariant Model & Loss (Ours)	Equivariant Model Only
Context prediction	32.7	35.1	31.5
Jigsaw	35.1	43.1	42.5
Momentum Contrast	63.8	65.7	65.0
SwAV	71.4	71.6	68.2
SimSiam	65.9	68.2	65.5

Table 1: Accuracy (%) on ImageNet with linear image classification setting.

Table 2: Mean AP (%) on VOC2007 with linear image classification setting.

Method	Baseline	Equivariant Model & Loss (Ours)	Equivariant Model Only
Context prediction	51.7	53.6	49.1
Jigsaw	52.9	56.7	57.8
Momentum Contrast	80.7	81.1	80.2
SwAV	85.6	86.8	86.6
SimSiam	81.7	81.1	81.5

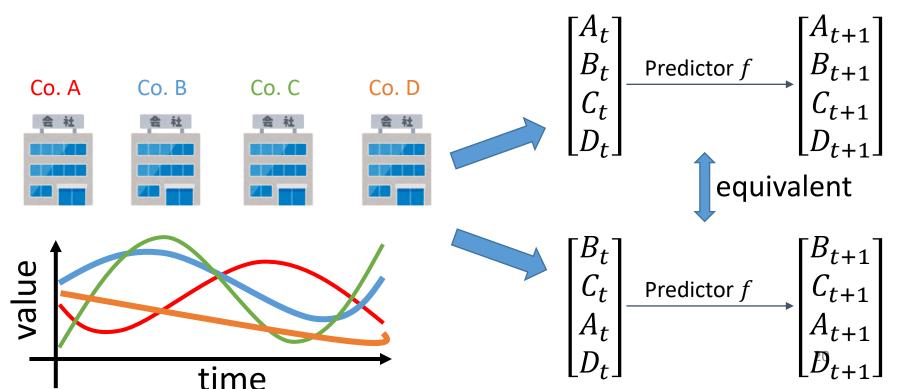
Table 3: Accuracy (%) on iNaturalist18 with linear image classification setting.

Method	Baseline	Equivariant Model & Loss (Ours)	Equivariant Model Only
Context prediction	8.56	8.56	6.97
Jigsaw	8.72	13.8	13.2
Momentum Contrast	33.4	33.8	31.2
SwAV	42.1	35.8	32.4
SimSiam	32.6	33.7	27.8

19

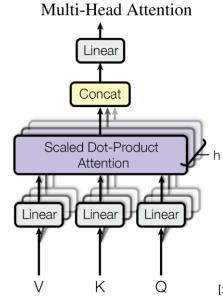
Multi variate time series prediction

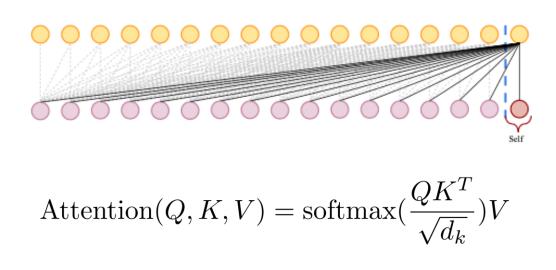
- Predict the future of multi-variate time series
- The predictor should be equivariant to the permutation of the time series.



Self-attention

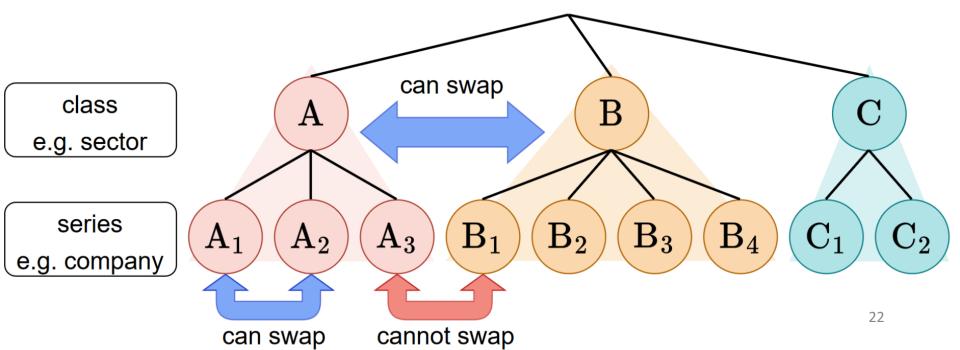
- Calculate the output by the weighted average of the input, whose weights are calculated by the similarity of the inputs.
- We can preserve permutation equivariance by applying self-attention between the time series.





Hierarchical permutation equivariance

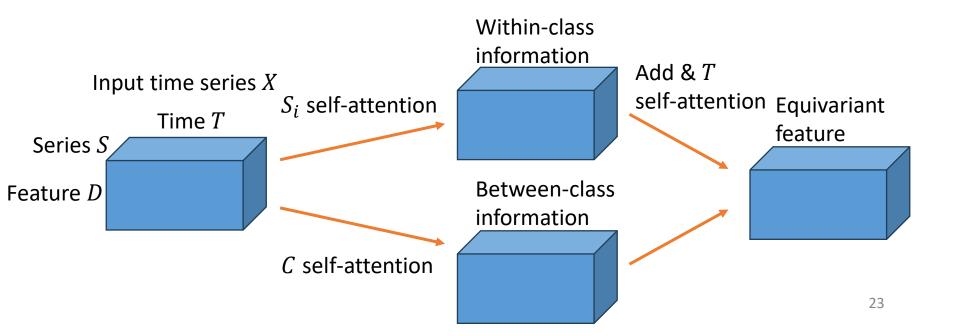
- We consider the case that time series are hierarchically grouped by such as sector, class.
- We want to restrict the equivariance to the permutation that considers hierarchy.



Feature extractor

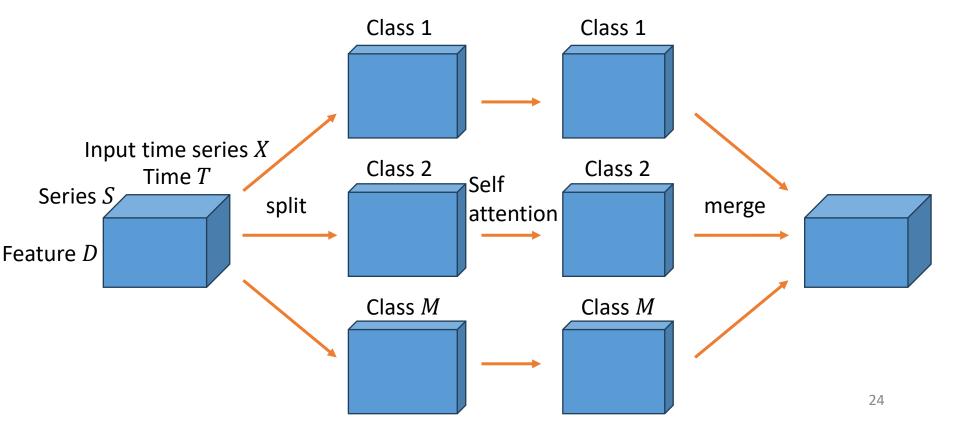
• Use 3D self-attention within class S_i, between classes C, time T.

 $SA3(X) = SA_{T}(SA_{S_{i}}(X) + SA_{C}(X))$



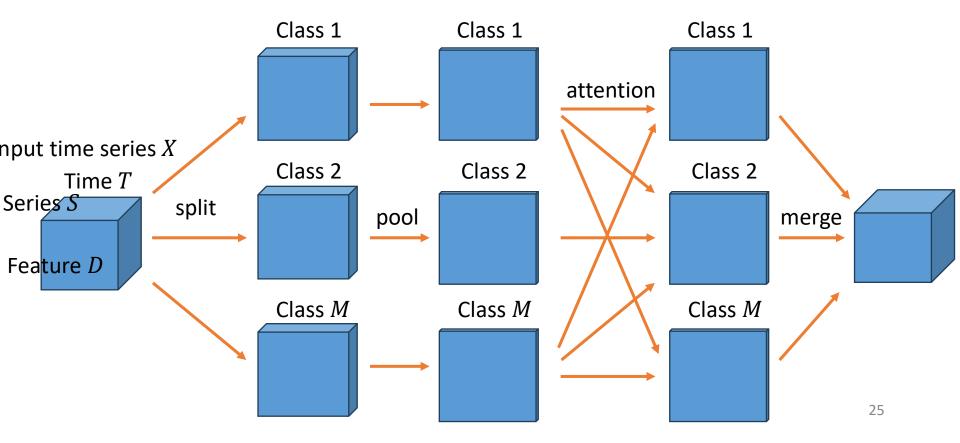
S_i self-attention

 Split the time series according to the class and apply self attention within class.



C self-attention

• Summarize the features of each class and then calculate the self-attention between the summarized features.



Experiment

- NBA: Trajectory of players and the ball in the basket game.
 - In: 40 steps, Out: 10 steps
 - 11 agents, 3 classes (ball, team A, team B)
 - Train: 80,000, Validation: 48,299, Test: 13,464
 - Evaluate the prediction accuracy by reducing the number of team A/B players at test time.

Result

ADE B	0	1	2	3	4
0	$(1.64 \pm 0.01 - 1.65 \pm 0.00)$	$1.69 \pm 0.01 - 1.69 \pm 0.01$	$1.73 \pm 0.01 - 1.73 \pm 0.01$	$1.78 \pm 0.01 - 1.78 \pm 0.01$	1.85±0.01 - 1.84±0.01
1	1.67±0.01 - 1.68±0.01	1.71±0.01 - 1.72±0.01	1.76±0.01 - 1.77±0.01	$1.83 \pm 0.01 - 1.83 \pm 0.01$	1.92±0.01 - 1.91±0.01
2	1.69±0.01 - 1.71±0.01	1.74±0.01 - 1.76±0.01	1.81±0.01 - 1.82±0.01	$1.89 \pm 0.01 - 1.89 \pm 0.01$	$2.01 \pm 0.01 - 2.01 \pm 0.01$
3	1.73±0.01 - 1.74±0.01	1.79±0.01 - 1.80±0.01	1.87±0.01 - 1.88±0.01	1.98±0.01 - 1.99±0.01	2.15±0.01 - 2.16±0.01
4	1.76±0.01 - 1.79±0.01	1.84±0.01 - 1.87±0.01	1.95±0.01 - 1.97±0.01	2.11±0.01 - 2.13±0.01	2.38±0.01 - 2.40±0.01

FDE B	0	1	2	3	4
0	$(3.69 \pm 0.02 - 3.68 \pm 0.01)$	3.78±0.02 - 3.76±0.01	3.87±0.02 - 3.84±0.01	3.98±0.02 - 3.94±0.01	4.13±0.02 - 4.07±0.01
1	3.73±0.02 - 3.72±0.01	3.82±0.02 - 3.80±0.01	3.93±0.02 - 3.90±0.01	4.06±0.02 - 4.02±0.01	4.25±0.02 - 4.19±0.01
2	$3.76 \pm 0.02 - 3.76 \pm 0.01$	3.86±0.02 - 3.85±0.01	3.99±0.02 - 3.97±0.01	4.16±0.02 - 4.13±0.01	4.41±0.02 - 4.35±0.01
3	3.81±0.02 - 3.81±0.01	3.93±0.02 - 3.93±0.01	4.09±0.02 - 4.08±0.01	4.31±0.02 - 4.29±0.01	4.65±0.02 - 4.61±0.01
4	3.86±0.02 - 3.87±0.01	4.01±0.02 - 4.02±0.01	$4.22 \pm 0.02 - 4.22 \pm 0.02$	4.53±0.02 - 4.52±0.02	5.06±0.02 - 5.02±0.02

NLL B	0	1	2	3	4
0	$(20.96 \pm 0.20 - 21.14 \pm 0.26)$	21.43±0.29 - 21.40±0.23	21.89±0.32 - 21.79±0.24	22.45±0.35 - 22.26 ± 0.24	22.97±0.39 - 22.67±0.24
1	21.39±0.30 - 21.42±0.24	21.74±0.31 - 21.69±0.23	22.29±0.35 - 22.16 ± 0.24	22.99±0.40 - 22.75 ± 0.25	23.69±0.45 - 23.31±0.25
2	$21.68 \pm 0.33 - 21.68 \pm 0.22$				
3	22.04±0.37 - 22.01±0.22	22.57±0.39 - 22.44 ± 0.21	23.45±0.45 - 23.19±0.22	24.66±0.54 - 24.22 ± 0.23	26.12±0.65 - 25.44±0.22
4	22.51±0.41 - 22.43 ± 0.20	23.21±0.44 - 23.00±0.19	24.39±0.53 - 24.02 ± 0.19	26.13±0.65 - 25.51±0.21	28.57±0.84 - 27.56±0.17

Left: without class information, Right: with class information 0~4 indicates the number of reduced players from each team

Conclusion

- We introduced two recent works relating equivariant neural networks.
 - Propose the idea of equivariant pretext labels and invariant contrastive loss to combine equivariant neural networks and self-supervised learning https://arxiv.org/pdf/2303.04427.pdf
 - Propose the multi-variate time series prediction method considers hierarchical permutation equivariance https://arxiv.org/pdf/2305.08073.pdf